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Determination of Parameters in Convected Maxwell 
Model from Linear Viscoelastic Parameters 

I3. HLAVACEK AND F. A. SEYER, Department of Chemical and 
Petroleum Engineering, University of Alberta, Edmonton 7 ,  Alberta, Canada 

synopsis 
Owing to its simplicity and general ability to correctly portray a number of important 

flow phenomena, the two-parameter Maxwell model has been employed in a number of 
important engineering studies. The relation of this equation to linear viscoelasticity 
and to some molecular theories is considered. A new rule is developed which shows how 
the shear-dependent relaxation time and viscosity of the Maxwell model can be deter- 
mined from linear viscoelastic parameters. It is thus shown that the two-parameter 
Maxwell model may be more general than earlier anticipated. 

INTRODUCTION 

The convected Maxwell model, 
SP P + 6 -- = apd, 
S t  

was introduced some time ago by White and Metzner' utilizing ideas of 
rubber rheology as well as the formalizations of Oldroyd.2 This equation, 
which has recently been shown to be quantitatively correct at  the large de- 
formation rates of interest in practical p r ~ b l e m s , ~ ~ ~  has proved useful in a 
number of other studies including turbulent drag reduction and flow 
through porous A number of equations similar to eq. (1) have 
appeared (see, for example, refs. 8,9 ,  and 10) which are based on molecular 
arguments and which may be thought of as superposing the effects of a 
large number of linear Maxwell elements. The possibilities are of course 
unlimited. Although generalizations based on molecular arguments are 
capable of defining the shear dependence of the functions 6 and p the in- 
hercnt simplicity of eq. (1) is lost, and, as will be shown later, there are 
severe difficulties in a unique determination of a large number of physical 
property parameters. 

In eq. (I), the material parameters in general need to be functions of the 
invariants of the deformation rate tensor d and are not restricted in form. 
From a molecular point of view, these functions may be viewed as repre- 
senting integral properties of a large number of molecules in solution. 
There has been no precise determination of the relation of t.hese functions 
in the White-Metzner model to the behavior of individual molecules. 
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We consider first the possibility of reduction of a large number of linear 
viscoelasticity parameters to a smaller number of parameters. Surpris- 
ingly, to the authors' knowledge, this has never been considered in detail 
before (usually the problem is considered from the opposite point of view 
wherein an experimental function is used to generate a large number of 
parameters). The results of the parameter reduction will then be applied 
to show how the White-Metzner parameters B(I1,III) and p(I1,III) are r e  
lated to simple constant Maxwell elements in both shear and elongational 
flows. 

PARAMETER REDUCTION 

For small gradients or deformations, we have 6 / 6 t  equal to the ordinary 
partial time derivative and require that 

lim e(I1,III) = const 

lim ,A(II,III) = const 

II,III--tO 

II,III-+O 

or that only two constants are necessary for defining the fluid. In simple 
shear flow, the function e and p in eq. (1) are defined through the physical 
components of the stress tensor as 

For a linear viscoelastic area, which is characterized for most polymers 
through many constant relaxation times (for example, the number of char- 
acteristic relaxation times p in the Rouse theorys is usually greater than 50) 
or through continuous spectra, it seems superficially that eqs. (1) and (2a, 
2b) are entirely unsatisfactory. In  fact, we will show that excellent pre- 
dictions of the linear viscoelastic functions can be obtained over at least 
two decades of independent variables. This property of parameter reduc- 
tion is a fundamental property of the basic viscoelastic functions and 
is not restricted in applicability to the nonlinear Maxwell model. An 
equivalent problem is determination of a continuous box spectrum and its 
relation to e. 

As noted above, eq. (1) reduced to a one-parameter Maxwell model for 
differentially small deformations and gradients. The measured quantities, 
for example, the relaxation modules G(t),  the real part of the dynamic vis- 
cosity ~'(o), or the dynamic modulus can be written in the form of a 
series : 11-13 
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n 
G(t)  = G, e-'/'P 

p =  1 
(4) 

where w is angular frequency, + is the steady shear gradient, and T ,  and G, 
may be viewed as constants for each Maxwell element. In  eqs. (6) and (7) 
if constants Op and G, are the same, then the functions are the same and 

In general, it appears that eq. (8) is incorrect and that better agreement is 
obtained without the 2. l4v l6  We account for this possibility by the non- 
equality of G, and Gp. We rewrite eq. (4) into a discrete form with param- 
eter ti (noting that in matrix notation lower-case letters will refer to the 
function ~ ( t ) )  : 

O r  

The individual elasticity constants GI, Gz 
laxation spectra H (log r)  through the relation16 

* . are connected with the r e  

Gi = H(log TJAlOg 7. (10) 

We will now show that the matrix €1 in eq. (9b) has such properties that a 
small change in the measured matrix g is reflected in a large change in G. 
Equivalently, through eq. (lo), we note that a small numerical change in 
G(t) is reflected as a large change in the function H(log T). Thus, if a 
series of functions lLr(t) - G(t) are possible whose shape and values are in 
the short interval as, for example, 
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we can find a corresponding series of functions Hl(1og T ) ,  Hz (log T )  . . . 
Hm(log 7 )  which differ significantly from one another. From this set, the 
function which can be characterized through the smallest number of param- 
eters will be chosen. Similar properties are exhibited by the matrices 
€2 and E3 derived from eqs. (5 )  and (6) such that 

For norm of a vector x, JIx(I, we will assume the usual properties: 

(a) J/xII > 0 if x + 0 

(b) l l 4 l  = ~ . l l X l I  

( 4  IIX + Yll I llxll + IIYII 
Thus, for the norm of g and G, we can use the functions 

and 

in which I 1 means absolute value. 
tions, we define in discrete form 

Similarly, for differences in the func- 

Ag = g - 4 9 1  

and therefore 

or for the relative value of the differences, 
n 
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i = l  

Let us suppose that the functions G(t) ,  H(1og T ) ,  and AG(t) from the in- 

are given. The largest difference in H(1og T ) ,  as terval AG(t)e f -~ 

measured by the absolute value of the difference at all points, occurs if 
the quantity Y ,  defined as 

3G(t) 
100 

is a maximum. Or, rearranging eq. (18), 

and substituting eq. (9b), we obtain 

According to Fadejev and Fadejeva," it is possible for every norm of a 
vector I/xil to define the corresponding norm of a quadratic matrix A in such 
a way that the following equation is valid: 

Therefore, eq. (20) becomes 

4llAgll) = IlElll . maxllG-'ll. (22) 

In eq. (22), the right-hand side is independent of the choice of IlAgll and 
therefore Y is a constant given by 

(23) Y = ll€lll - 11€1-'11. 

For every eigenvalue X of a matrix A, 

IAxI = 1x1 - 1x1 I IAl 1x1; 

therefore, in eq. (23), 

in which max J X t l  and min ]All are the maximum and minimum eigenvalues 
of E. It follows that the error interval AG is minimum if €1 is a unit matrix 
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and increases as El differs from a unit matrix. 
connection can be shown as follows: 

spectrum : 

The properties of El in this 

Equation (4), for example, can be rewritten in terms of a continuous A. 

~ ( t )  = J e-t" H(log T) a log T. (25)  - 

In the continuous form of eq. (25) ,  the unit matrix I corresponds to B Dirac 
delta function, 

I - 7 8 ( t  - T), 

and we see that the nonequality which is equivalent to eq. (24) is simply 
that 

c - t / T  # T8( t  - 7) 

~ 8 ( t  - ~)(...)d log T are (operators 

enormously different) and, consequently, that €1 does not have the prop- 
erties of a unit matrix. 

The numerical inversion of eq. (9a) has been considered in some de- 
tail by Clauser and Knaus18 (compare also to the numerical solution of 
general integral equations of the first kind19220). They have shown how G is 
subject to large oscillations which are directly related to the properties of 
the E matrices. 

Lrnm e - t ' T ( .  . -)d log T and Sb 
B. 

According to Appendix I, we have 

in which 

€1 = El* + C€l (26b) 
and where llcll= Q << 1 is the norm of the "error" matrix which expresses 
the (small) numerical nonprecision in the matrix E. In eq. (26), the Il~Gll 
is in the order of the average value of the oscillations and may be several 
orders of magnitude larger than 11G11.'"-"' 

Furthermore, since q and Ag approach zero, we must have 

and therefore El is a nonunit matrix. Similar comments apply to all of the 
functions €1, E,, and . . En, which are essentially exponential in behavior.-"I 
A more detailed discussion from a mathematical point of view is available 
elsewhere. 22 j28  

NUMERICAL EXAMPLE 

We illustrate the preceding discussion with a simple numerical example 
by choosing several different functions H(1og T) and determining the cor- 
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responding response function G’(o) given by eq. (6). The G, in eq. (9a) 
are determined from eq. (10) with Alog 7 = 0.1. Table I gives the assumed 
relaxation spectra H(1og 7 )  numerically. HI, and H,, H3 are characterized 
by two- and one-time constants, respectively, while H4 and H5 represent 
continuous functions characterized by 10- and 20-time constants. 

TABLE I 
Assumed Relaxation Spectra 

log 7 Hi H2 Ha H4 H5 

1 . 2  
1 . 1  
1 . 0  
0 . 9  
0 .8  
0 .7  
0 . 6  
0 . 5  
0 . 4  
0 . 3  
0 . 2  
0 . 1  
0 .0  

- 0 . 1  
- 0 . 2  
- 0 . 3  
-0 .4  
-0 .5  
-0 .6  
-0 .7  
-0 .8  

0.0 
0.0 
0.0 
0.0 
0.0 
0.0  
0.0 
0 . 0  

10.0 
0.0 
0 . 0  
0 .0  

10.0 
0 . 0  
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

20.0 0 .0  
0 . 0  20.0 
0 . 0  0 . 0  
0 . 0  0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0  
0.483 
2.66 
3.48 
2.48 
1.67 
2.50 
3.49 
2.66 
0.52 
0 .0  
0 .0  
0 .0  
0.0 
0.0 
0.0 

-~ 

0 . 0  
0.101 

-0.004 
-0.207 
-0.216 

0.184 
0.954 
1.84 
2.59 
3.06 
3.22 
3.08 
2.62 
1.85 
0.93 
0.15 

-0.21 
-0.15 

0.035 
0.066 

-0.026 

A comparison of the dynamic modulus functions determined from the 
various spectra is given in Table 11. Here, the square of the error relative 
to G’(w) ,  is given as a function of w. In  all cases, it is clear that G‘(o), at 
least over approximately two decades, is insensitive to the form of the 
assumed relaxation spectra. 

In  the case of real spectra, extending over many decades, the exact re- 
production of the function G’(w) is not possible by using only one Maxwell 
element with constant parameters. For real polymers, T o b o l ~ k y , ~ ~  using 
his X procedure, reduced a box spectrum extending over 6 decades into a 
box spectrum ranging over 2.2 decades with little effect in reproducing the 
measured function G(t).  In another case, T o b o l ~ k y ~ ~  explained the re- 
laxation properties of organic glasses using only one relaxation time. 
MeissneP has reduced a continuous spectrum over 4 decades for poly- 
ethylenes to four discrete Maxwell elements with constant parameters. 
We have shown that these cases of parameter reduction are not necessarily 
dependent on special properties of the materials (as Tobolsky b e l i e ~ e d ~ ~ . , ~ ) ,  
but reflect the general properties of operators governing memory effects in 
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viscoelasticity. The data as well as the numerical example show that a 
single time-constant is always adequate to replace at least one decade of 
the continuous spectral function. 

Similar comments apply to nonlinear continuum models which rctsin the 
essential features of eqs. (4)-(7). That is, from a continuum point of 
view, we cannot distinguish the difference between models with very few 
relaxation times from those containing a large number (say 50) relaxation 

TABLE I1 
Error in Real Part of Dynamic Modulus Predicted from Various Spectra 

log 
w GH,' (GH,' - G H ~ ' ) ~  ( G H ~ '  - G H ~ ' ) ~  (GH~'  - GH,')' (GH,' - GH~')'  

1.1 1.97 
1.0 1.95 
0.9 1.93 
0.8 1.89 
0.7 1.83 
0.6 1.76 
0.5 1.65 
0.4 1.52 
0.3 1.36 
0.2 1.18 
0.1 0.998 
0.0 0.811 

-0.1 0.634 
-0.2 0.475 
-0.3 0.342 
-0.4 0.237 
-0.5 0.160 
-0.6 0.105 
-0.7 0.068 
-0.8 0.044 
___ .- 

0.5138 X 
0.127 X lo-' 
0.312 X lo-' 
0.757 X lo-' 
0.179 X 
0.413 X 
0.905 X 
0.183 X 
0.331 x 10-8 
0.504 X lod2 
0.593 x 
0.468 x 
0.173 X 
0.371 x 
0.143 X 
0.421 X 
0.5477 X 
0.470 X lo-* 
0.310 X 
0.1721 X 

0.983 X 
0.2440 X lo-' 
0.601 X lo-' 
0.146 x 
0.351 X 
0.822 X 
0.184 X 

-0.389 X 
0.752 X 
0.127 X 10-l 
0.181 x 10-l 
0.203 x 10-l 
0.168 X 10-l 
0.939 X 
0.293 X 
0.248 X 
0.873 X lo-* 
0.413 X 
0.468 X 
0.336 X 

0.217 X lo-' 
0.42.; X 
0.768 x lo-' 
1.23 x 10-4 
1.65 X lod4 
1.73 x 10-4 
1.316 X 
0.656 X lo-' 
0.168 X 
0.0004 X lov4  
0.132 X lo-' 
0.573 X lo-' 
1.18 x 10-4 
1.58 x 10-4 
1.51 x 10-4 
1.11 x 10-4 

0.370 x 10-4 
0.68.5 X lo-' 

0.183 X lo-' 
0.086 X lo-$ 

0.631 X 
0.615 x 10-4 
0 . m  x 10-4 
o . . ~  x 10-4 
0.476 X lo-' 
0.345 x 10-4 
0.161 X 
0.254 X 
0.194 X 
0.353 X 10' 
0.060 X 
0.224 X lo-' 
0.263 X 
0.127 X lo-' 

0.272 X 
0.092 x 
0.071 X 
0.215 x 10-6 
0.227 x 

0.199 x 10-5 

times. There needs to be, however, a spectral function which has a physi- 
cal basis, and this needs to be determined through optimum methods based 
on unit operator. ,I6 

APPLICATION TO WHITE-METZNER EQUATION 

Although a formal procedure for separation of relaxation times is not 
precisely defined, it is clear that if we wish to use a one-parameter relaxation 
spectrum, then separation of relaxation times by at  least one decade is 
possible. Therefore, in the following we assume that T ~ + I  is negligible 
compared to rt.  The limit of zero gradient will be considered followed by :I 

generalization to larger gradients. 
In the limit of zero gradient for steady shear flow, we can put from eys. 

(5) and (7) (noting that the same series applies for p and 7 ' )  
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n 
limp(+) = C Gpr.  
Y-0 p =  1 

Generally, since the G, vary only slightly (for a box spectrum they are 
constant), comparison of eqs. (2)  and (3)  with (27) and (28) gives 

lim ~ ( O , I I , O )  Z T~ 
11-0 

and 

lim p(O,II,O) 
11-0 

since r2 << T I .  It should be noted that we have assumed that G, = 8, or 
that eq. (8) is valid. Since 
we have shown that the basic functions can be reproduced over approxi- 
mately 2 decades with one relaxation time, it follows that in the range of 
independent variables, 

If eq. (8) is valid without the 2, then 0 N rJ2. 

log t 2 log 71 - 1 

log 1/w 2 log 71 - 1, 
(29) 

eq. ( 1 )  with e = T~ = constant will be satisfactory. In  fact, the sums (27) 
and (28) are slightly larger than the first term and will be shifted toward 
the second relaxation time. The effect on the basic functions, however, 
will be entirely negligible, as illustrated by the functions G’(w)H, and 
G ’ ( w ) ~ ~  in Table 11. In some cases, Tobolsky’s dataz5 indicate that the 
range of applicability of independent variable may be much larger than 
indicated in the preceding example. 

To extend the range of gradients expressed by eq. (29), let us suppose the 
total response of the fluid arises from contributions of separate fluids A 
and B. The elements A and B are each described by eq. (l), so that for 
each element 

or for the whole 

In eqs. (30)-(32), we can think of A and B as separate polymers which have 
been mixed or, in the present context, that A and B are contributions from 
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different parts of the spectra such that 71  - OA >> max eB and eB = j(11,III). 
Considering simple shear flow, 

6 P S  6 P A  6 P B  
-=-+st 6t 6t (33) 

/Is = /I* + P B .  

According to the “stress-optical law,”28-30 if x is the birefringence angle, 
then 

(34) 

P l l A  - P B A  

2 P 1 z A  
cot (2XA)  = 

or, rearranging and using eq. (3), 

Similarly, for component B and the whole system S, 

cot 2XB eB = ~ 

Y 

(35) 

(37) 

Because the principal stress of systems A and B are additive as vectors,3o 
we obtain for 0s 

The geometric relation resulting in eq. (39) is shown in Figure 1, where the 
point S characterizes the stress state of the whole system and AS, AB, 
and AA are the principal stresses for S, B, and A, respectively. From eq. 
(35)-(39), it follows that 

6APl!ZA + @ B P U B  es = 
P1zA + PUB 

Or, in general for a system of n components, 

5 B , P ~ ~ ~  

2 PUi  

i =  1 es = 

i = l  

and 
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S 

Fig. 1. Geometric relation for stress coutributions: AA, principal stress of system A; 
AB, principal stress of system B; AS, principal stress of entire system S. 

Equation (41), expressed through the White-Metzner parameters for dif- 
ferent noninteracting systems, is analogous to the Sadron optical rule30 
which was introduced by study of birefringent solutions. In general, the 
systems are interacting or the friction coefficient of an individual monomer 
unit is changed, and the relaxation times of an individual component are 
shifted relative to those for pure components. The shift of relaxation 
times observed on blending different molecular weight fractions has been 
studied in some detail by Ferry and Ninomya11*31,32 and may be described 
by a shift factor of order unity. The blending laws may be of especial im- 
portance in the estimation of the elastic properties of very dilute solutions 
wherein it is not possible to directly measure normal forces. 

Equations (41) and (42) provide a general rule for formulating the shear- 
dependent White-Metzner relaxation time and viscosity as separate con- 

TABLE I11 
Comparison of Predicted and Experimental Relaxation Times for 

Polyisobutylene Solution 

71, Gn7w i, 
n sec poises sec-l e( i . ) ,  sec Os(-i), sec 

1 10-1 6.1 10 2.5 x lO+ 3.9 x 10-2 
2 10-2 4.0 108 4.6 x 10-3 7.1 x 10-3 
3 10-8 1.9 103 6.1 x 10-4 14.4 x 10-4 
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tributions from a number of components. It is worthwhile to emphasize 
that these relations must be satisfied for any choice (for which (Pll - 
P22)s = F , ( j )  + . . . F,(i.) and 6* are determined from er = Fi/2ptf2) of 
the component functions, including those which arise from theoretical con- 
siderations. The addition rule provides a direct relation between the vis- 
cosity function and shear dependence of the relaxation time. Again, for 
dilute solutions, i t  should be noted that cqs. (41) and (42) apply rigorously 
only to the polymer contribution of the stress. 

The addition law can be illustrated from Tanner’s dataI5 for a 5.4% poly- 
isobutylene cetane solution. Tanner’s spectrum has been reduced 
(crudely) to  three characteristic times T,, as shown in Table 111. The 
6(f) is estimated directly from the published normal stresses using eq. (3) 
or equivalently eq. (1)) and 6 s  has been determined using eq. (41). In  view 
of the crude reduction of parameters, the agreement with 6 determined 
from the normal stress measurements is rather good. Better agreement can 
be obtained by a slight shift of the relaxation times to coincide with the 
peaks in the spectra determined by Tanner. 

NONVISCOMETRIC FLOW 

Owing to the possibility of parameter reduction, we can comment briefly 
on the form of material functions for elongational flow by a consideration of 
molecular arguments. In  elongation flow, the kinematics are defined by 

VI = dii*xi 

Vz = (-d11/2)xz 

V3 = (-d11/2)Z3 

and the second and third invariants of d are 

3 
I1 - - - j 2  

d - 4  

(43) 

1 
I11 - -73. 

d - 4  

For the elongational viscosity defined as the total stress in the axial di- 
rection divided by the deformation rate, eq. (1) predicts 

3p(II,III) 
[l + 6(11,1II)dii] [l - 26(1I,III)dii] q s  = (45) 

I n  eq. (45)’ no information is given as to how the parameters 6 and p de- 
pend on the second and third invariants in elongational flow. As a first 
approximation, these have been assumed equal to the function determined 
in simple shear, and dependence on the third invaiiant therefore was ne- 
g l e~ ted .~J  Alternatively, if we assume contributions from a number of 
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Maxwell elements (characterized through constant parameters and built on 
molecular notions), then the elongational viscosity may be written 

n 

(46) 

in which ri and qf are constants. In shear flow, the most elementary de- 
pendence on the second invariant of the contribution to solution viscosity 
of each Maxwell element has been shown in a number of instances to be 
(see, for example, refs. 11 and 34) 

311 i 
G e  = c 

i = l  (1 + Tidll)(l - 27idll) 

q i  . 
1 + 4ri2-II Pi = (47) 

Thus, in the viscosity function of the White-Metzner equation, the relevant 
viscosity function which is consistent with simple molecular arguments is 

n n 

p(I1,III) = c pi = c q i  fi(II1) 
i =  1 i = 1 1 + 48,211 

where we insert f(II1) to account for the possibility of p depending in the 
third invariant. The function fi(III) has not been considered experimen- 
tally; however, we requirefi(0) = 1. Furthermore, it is clear from eq. (46) 
that the dominant contribution to qe is always from the longest relaxation 
time. Previous calculations based on a molecular mode13j where the sud- 
den increase in elongation viscosity was observed to be in the area of the 
first relaxation time are in agreement with this. In the area of longest re- 
laxation time (in fact, for at  least the first decade), we have shown that a 
single constant e in the White-Riletzner equation is sufficient to portray the 
viscoelastic functions. Therefore, applying eqs. (30) and (31), say as an 
approximation, where A reflects longest relaxation time and using eq. (48) 
for the viscosity function, 

As before, if we assume that @A >> eB, the first term in eq. (49) is dominant. 
Thus, if we compare with eq. (46), it is seen that 

e A  + 71 = const 
and 

or that the proper parameters in the White-Metzner equation for elonga- 
tional flow are simply the zero shear viscosity and first relaxation time of 
the material. Therefore, using eq. (44), we find 

fi(III) = 1 + 3 ~ 1 ~ ( 4 1 I I ) ~ ' ~ .  (50) 
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Equation (50) gives an explicit dependence of viscosity on the third in- 
variant which is consistent with molecular arguments and would appear to 
be valid for use with the White-Metzner equation. From a molecular 
point of view, we are in effect noting that if the elongation viscosity of one 
element increases indefinitely, then the elongation viscosity of the entire 
solution must increase indefinitely. 

The importance of separating the polymer contribution to the shearing 
and normal stresses in determination of e and p can be emphasized by con- 
sidering eqs. (38) and (49). In eq. (49) it is clear that large elongation 
viscosities occur if 2 e ~ d ~ 1  approaches unity. Thus, in eq. (38) the limiting 
birefringence angle is approximately 31". Available data28.38 based on 
the total stress of the solution, not just the polymer contribution, indicate 
that at high shear rates the birefringence angle becomes a constant, xo 
which is characteristic of the solution, or equivalently that 20y = constant. 
Now, if xE > 31", the limit of 20-i - unity would be exceeded at the ap- 
propriate deformation rate in elongation flow while, if the constant xc < 
31", the material would never have 2ey approaching unity. This is not 
the case if one considers only the polymer contribution to the birefringence, 
eqs. (36) or (37). It has been shown35 that in the area of gradient equal to 
the reciprocal of the first relaxation time, the curves for (Plz)po~ and (PII - 
P22)p01 cross, and for larger gradients, (P12)p01 is always less than (P11 - 
P22)pol or that aey > unity. That is, if we use only the polymer contribu- 
tion to stresses in determining 8, an infinite elongation viscosity will be pre- 
dicted for all solutions. This is consistent with the molecular arguments 
where it was observed that only one of the Maxwell elements needs to have 
a critical stretch rate for the whole solution to show an infinite elongation 
viscosity. Gordon" has observed similar effects where there appears to be 
a certain molecular weight below which on<would never observe a critical 
elongation viscosity. Gordon, although considering only the polymer con- 
tribution to P I 2 ,  has neglected to remove the solvent contribution to 
Pl1 - Pzz. 

CONCLUSIONS 
In the most elementary case, the relaxation times 0% in eq. (41) have been 

shown to coincide with the constant time parameters ri = 4. It follows 
that the White-Metzner parameter 0s can then be connected directly to the 
linear viscoelastic spectra and use can be made of the extensive linear vis- 
coelastic data to show how 0s depends on concentration, temperature, etc. 

In elongation flow, the dependence of es and ps on the third invariant 
was proposed. Effectively, the proposed function forces the shear viscosity 
part of the elongation viscosity to be independent of the rate of elongation. 
In this regard it is important to emphasize the difference between elonga- 
tion and shear flows at  a molecular level. In  shear flow, each molecule is 
deformed in a harmonic fashion while rotation takes place. In  steady 
elongation, the particle assumes a steady position and is subject to a 
steady force which determines the elongation. The differences in the 
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character of t,hese two flows expressed through dependences on the second 
and third invariants, therefore, will probably depend on the rotation or 
vorticity of the flow. 

The estimation of es from birefringence measurements is possible through 
eqs. (33)-(41) and, since these are connected directly to structural char- 
acteristics of the material, may provide an important tool in connecting 
continuum and molecular models. 

Appendix 
Equation (26) is a more general form of eq. (18) in which the possible error of matrix 

El i expressed in eq. (26b) and provides a means for estimation of how Ag or CF1 con- 
tribute to AG. 

We, in fact, solve the equation 

€i*G* = g* (A-1) 

where 

g = g* + Ag 

G = AG + G*. 

From eqs. (9b) and (A-1) we have 

( I  - C).LG* = g* (A-4) 

FIG* = ( I  - C)-’g* = ( I  + C + C* + . . .)g + ( I  + C + C2 + . . .)Og, (A-5) 

and through rearrangement of eq. (A-5) in terms of the norms, 

which is eq. (26). 

List of Symbols 

empirically determined constant (approx. unity) 
constant 
deformation rate tensor 
discrete (matrix) representation of relaxation modulus and 

L( error,” 3r “change,” in relaxation modulus 
norm of matrix C 
time 
velocity 
coordinate directions 
norm of matrix x 
general quadratic matrix 
error” matrix 

matrix of exponential functions (see 9a) 

real part of dynamic modulus, respectively 

i( 
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€2, €3 = corresponding matrices for relation of real part of dynamic 
modulus and real part of dynamical viscosity to discrete 
relaxation spectra 

G(t)  = linear relaxation modulus 
G’(o) 
AG 
G,  

coelastic Maxwell model 
H(1og r I = continuous logarithmic relaxation spectrum 
I = unitmatrix 
P = deviatoric stress tensor 
PI1 - P22 = first normal stress difference (1 indicates flow direction, 2 in- 

11,111 = second and third invariants of shear rate tensor 
-3 = velocity gradient 
6 
6t 
6 ( t  - r )  = Dirac delta function 
~ ’ ( w )  
Tel 

??el 

e 
x 
P = the viscosity parameter of White-Metzner equation 
Y 

7 = continuous relaxation time 
TP 

6 

X = birefringence angle 
6J = angular frequency 

= real part of dynamic modulus 
- - 6 (  error,” or possible change, in discrete relaxation spectra 
= modulus which characterizes spring stiffness of linear vis- 

dicates direction of shear) 

= Oldroyd convected derivative 

= real part of dynamic viscosity 
= elongation viscosity of White-Metzner model, eq. (45) 
= elongation viscosity of model which is built on molecular 

= relaxation time of White-Metzner equation 
= eigenvalue of matrix A 

= parameter defined through eq. (18) 

= constant relakation time of pth Maxwell element 
= functions that are possible representations of the relaxation 

- 

- 

motion 

modulus G(t) 
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